Home / All Notes

\(|x|\) Properties

The absolute value function: \[|x|=\begin{cases}x&x\geq0\\-x&x<0\end{cases}\]

Absolute value properties:

Proof for \(|ab|=|a||b|\):

Consider \(|ab|=|a||b|\). There are four possible states: \((a,b<0);(a<0,b>0);(a>0,b<0);(a,b>0)\).

If \(a,b<0\): \(ab>0\implies|ab|=ab\). Also \(|a|=-a\) and \(|b|=-b\) thus \(|a||b|=(-a)(-b)=ab\).

If \(a<0,b>0\): \(ab<0\implies|ab|=-ab\). Then \(|a|=-a\) and \(|b|=b\) thus \(|a||b|=-ab\).

If \(a>0,b<0\): \(ab<0\implies|ab|=-ab\). Then \(|a|=a\) and \(|b|=-b\) thus \(|a||b|=-ab\).

If \(a,b>0\): \(ab>0\implies|ab|=ab\). Also \(|a|=a\) and \(|b|=b\) thus \(|a||b|=ab\).

QED